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I. INTRODUCTION

4

L

i

5

.

s

L

L

.

»

.

r

o

.

.

.
L
.

e
B

O VPP PP W S

Suppose & is a class of information sources. For a given distortion

measure, consider the function

sup Ra(D); D20 ¢5)

o] a€a !
K i
& :
% where Ra(D) is the rate-distortion function (corresponding to the given K
- .
- distortion measure) for the individual source a. The quantity in (1) is
lF: of interest in the study of coding schemes for classes of sources. For

example, under compactness conditions on the class & the quantity in (1) :
E represents a rate-distortion function for & (as defined by Sakrison [l]), and, !

» even for noncompact classes, the quantity of (1) is a lower bound on this

v

rate-distortion function. Further, if there is a universal code for &,

then the quantity in (1) describes the worst-case rate (versus distortion) i

~

required to transmit, via the universal code, an arbitrarily chosen member

o of 4. ‘
P In this paper we consider the function in (1) for classes of homogeneous l
o discrete-parameter sources that are specified only in terms of the spectral
g' properties of their elements. We consider the particular version of (1)
_: corresponding to the single-letter mean-square-error (MSE) distortion é
P measure, Note that for the one-parameter case, which corresponds to & '

-

being a class of covariance-stationary discrete-time sources specified only

in spectral terms, the MSE version of the function in (1) is unchanged if
d is replaced by its subset consisting only of Gaussian sources (Berger

[2, p. 154]). Thus, in this context, it is reasonable to restrict attention

to the consideration of classes of Gaussian sources. Such a class & can
2 be specified completely by defining a class 7 of spectral measures, and the

determination of the quantity of (1) for two specific source classes of




7
s

)

T8
';'_“

R

S
'.." .

£
M

this type has been considered previously by Sakrison [3]. Here, for a
general type of such classes, we demonstrate the existence of a member
spectrum whose rate-distortion function achieves (1) for each value of

D 2 0. 1In particular, we consider classes 7] whose upper measures are
Choquet alternating capacities of order 2 (Choquet [4]). Such classes
occupy a central position in generalizations of the theories of hypothesis
testing (Huber and Strassen [S5]) and .of stationary linear smoothing (Poor
[6]), and include many important classes such as contaminated mixtures,
variation neighborhoods, and Prohorov neighborhoods. We show here that
the spectrum achieving the supremum in (1) for such a class is given by
the derivative (in the sense of Huber and Strassen [5]) with respect to
Lebesgue measure of the upper measure of 7 and corresponds to the element
of M that is closest to Lebesgue measure in a sense defined by directed
divergence. Since Lebesgue measure represents a white spectrum (corres-
ponding to a memoryless source), the maximizing spectrum is thus the member
of M that is '"most memoryless', a result that certainly agrees with the
intuitive meaning of the MSE rate-distortion function,

Section 1I contains a more complete specification of the spectral
classes to be considered and gives properties of these classes that are
relevant to the determination of the quantity sgp Ra(D)’ A number of
examples are also presented that demonstrate t;e ‘g?enerality of this type
of class. Section III contains the main analytical results concerning the
quantity in (1) for such classes., 1In particular the existence of a maxi-
mizing spectrum is demonstrated, and the characterization of this spectrum
as the element of 7] closest to Lebesgue measure is established. Section
IV considers in detail the specific case in which the class 7 consists of

all spectra that are a convex mixture of a discrete-time wide-sense Markov

spectrum and an unknown '‘contaminating' spectrum, and the results of
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Section III are illustrated directly for this case. The extension of the

results to continuous-parameter cases is discussed in Section V.




1I. CHOQUET CAPACITIES, HUBER-STRASSEN DERIVATIVES, AND SPECTRAL UNCEi!IAINTY

-

Throughout this paper n is a fixed positive integer and X = {Xt;téan}
is ann-parameter homogeneous Gaussian source (Z denotes the set of all
integers). By way of Bochner's theorem (Wong [7, p. 245]) a class of
sources of this type can be specified by defining a class 7 of spectral
measures on (1,3) where Q denotes the n-dimensional rectangle [-1‘r,1'r]n and
2 denotes the Borel cg-algebra on (. In this paper we will restrict our

attention primarily to classes 7 satisfying the power constraint m() = (Zn)-nP

T TV T
P,
PR

for all m € M where P is a fixed positive number. It is straightforward to
relax this constraint; this restriction, however, allows us to consider the
effects of spectral shape on the rate-distortion function in more detail.

The upper measure v of a class 7 with power constraint is the set

- function on Z defined by

e om e
Lenl B .
s

‘e . -

' v(B) = sup m(B); B € 3. )
" mEM
Note that v has the following properties: (i) v(¢) = 0 and v(Q) = (Zﬁ)-nP,
= (ii) AC B implies v(A) € v(B), and (iii) Bn f B implies v(Bn) t v(B), where
all sets are assumed to be in 5 and ¢ denotes the null set. If 7 is weakly
compact, then v has the additional property (Huber and Strassen [5, p. 252]):
(iv) Fn ! F with Fn closed for all n implies v(Fn) } v(F). A set function
.. having properties (i) through (iv) is a capacity on Z in the sense of
Choquet [4]. 1In this paper we consider classes whose upper measures satisfy
(1)-(iv) and the additional property: (v) v(A U B) + v(AN B) £ v(A) + v(B)
{3 for all A, B € 5. A capacity satisfying this latter property is said to be

alternating of order 2 and is termed a 2-alternating capacity. Note that a

i finite measure is an example of a 2-alternating capacity.

.................
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1f the upper measure v of a class 7 is a 2-alternating capacity then

M coincides with the class W(v defined by
m, = {m¢€ M| m(B) < v(B); BE€ A, and m(Q) = vQ)} 3)

where M denotes the class of all finite measures on (1,8) (Huber and
Strassen (5, Lemma 2.5]). Classes of the form of (3) include many of the
traditional models for spectral uncertainty, and a number of useful examples
are discussed below. It is interesting to note that all such classes are
weakly compact [5, Lemma 2.2] and that, if v is a measure, then 7/1v = {v}
Thus any results obtained for 7/(v also apply to a single measure; in fact

the classes 7)zv have been useful in generalizing hypothesis testing and
Wiener filtering results which hold for single measures (such as the
Neyman-Pearson Lemma) to classes of measures [5,6].

The properties of classes of the form of (3) have been studied by
Huber and Strassen [5]. The properties of such classes relevant to the
present problem can be summarized in the following two lemmas (here, and
elsewhere in this paper, A denotes Lebesgue measure on (2,°)):

Lemma 1: Suppose Vv is a 2-alternating capacity on (Q,0). There exists a
Lebesgue-measurable function 7 _ :Q = [0,2] such thatlwa ({nv>e}) -_Buegfe ¥y (B)

for each & 2 0 where L) is the set function on 5 defined by
W (B) = v(8°) + 31 (B), BEA. é)

Furthermore, m, is unique a.e. [A].

leor compactness of notation we will write {f > 6} todenote (w€Q| £(w)>8}.




Proof: Since A is a finite measure and hence a 2-alternating capacity on

Q,2), the existence of m, follows from Lemmas 3.1 and 3.2 of [5]. The

uniqueness of m, follows from Theorem 5.1 of [5].

Lemma 2: Suppose v and W, are as in Lemma 1 and Bg g {nv >8}, Y6 = 0.

c c
Then there exists a measure q € M, such that m, = dq/d\ and q(By) = v(By)
for all 8 2 0. Here dq/d\ denotes the generalized Radon-Nikodym derivative
of q with respect to A; that is, dq/d\ may be infinite on a set of A

measure zero.

‘Proof: The existence of such a q follows from Theorem 4.1 of [5] and from

the construction in the proof of this theorem (see also Huber and Strassen
(8.

Note that, if v is a finite measure, then the function T, is the
(generalized) Radon-Nikodym derivative of v with respect to A. fartly for
this reason Huber and Strassen termed the function m, the Radon-Nikodym
derivative of v with respect to A. However, to distinguish ﬂv from an

ordinary Radon-Nikodym derivative, we will term m, the Huber-Strassen

derivative of v with respect to A. Lemmas 1 and 2 are particular cases of
more general results for differentiating one capacity with respect to
another [5]. In this more general context, the Huber-Strassen derivative
is the basis for minimax hypothesis testing between two classes of
probability measures of the fornn%% [5] and for minimax linear smoothing
of a signal with spectral measure in a class of the form W% observed in
additive noise with spectral measure in a class of the form W%,[6].

Lemmas 1 and 2 give the basic properties needed to consider the rate-
distortion function over classes of Gaussian sources determined by spectral

classes of the form of (3). We conclude this section by giving several

useful examples of such classes that illustrate the generality of this

...................
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model. In Examples 1 and 2, @, is a fixed finite spectral measure on (2,2)
and ¢ is a fixed number in [0,1]. 1In all cases vi(¢) is defined to be

zero.

Example 1 (e-mixtures): The set function vl(B) = (1 -e)mo(B) + emD(Q),

B€S, B # ¢ is a 2-alternating capacit:y2 and ﬁ% is given by
1

7Rv1={m€ M|m=(l- e)m,+¢h for some h€ M with h@) =m;@)}. 5)
Thus m, can be thought of as a nominal spectral model and ¢ as a degree
of uncertainty placed on the model. The model of (5) is one of the earliest
models used for uncertainty in robust hypothesis testing and signal-
detection studies (Huber [9], Martin and Schwartz ([10]) and was noted in
[5] to be of the form of (3). The Huber-Strassen derivative of v, with

respect to Lebesgue measure on ? is found by noting that the set function

w,

A of (4) is given for this case by

(l-e)mo(Bc)+em0@)+e7\(B); B #0
we(B) = (6)
Q) = 8m” ; B =Q

which is minimized over & by the set

2

Note that this set function (and the one defined in Example 2) is dis-
continuous fromabove at the null set ». However, for (i = [-m,m]®, this
discontinuity does not violate the property that v must be continuous
from above on closed sets (i{.e., Property (iv)) since, in a compact
separable metric space, there is no sequence of closed sets converging
down to the null set (Dunford and Schwartz [l11, pp. 30-31]).

PP b PRI PRI SRR s G




{"o > 6/(l-e)}; if vo(dmy > 8/-e)h)y < e H"

R ¢] 7
.. ) Q ; otherwise

G

S

l - where no = dmo/dl. Noting that we can define ﬂv(w) = inf{62 OIwQ Be},

‘ we have that

\ mo @) = max{c', (1-e)m,@}, wea, @)

where ¢' = sup{82 Olwe({no >0/(1l-e)H = G(Zﬂ)n}. A specific example

of this class will be considered in Section IV below.

Example 2 (variation neighborhoods): The set function VZ(B) =

min{mo(B) +em0(Q), mo(ﬂ)}, BEAB, B+ ¢, is a 2-alternating capacity with

mvﬁ given by

mvz = (m€ Mo (m,my) < em @), and m@) = myE)} (9)

where ¢ is the variational distance (or Kolmogorov metric) defined on M

by o (,v) = sup|u(B) - v (B)
BES .
considered previously in the contexts of robust hypothesis testing (Huber

. Classes of the form of (9) have been

R

[9]) and robust Wiener filtering (Poor [12]). Note

that this class is also a model for a degree € of uncertainty in a

o

nominal spectral model mo, although the deviation allowed in (9) is somewhat

. .
TN

different from that allowed in (5)., Note further that (9) with degree of

uncertainty €/2 contains (5) with degree of uncertainty €. The de-

>
L N

rivative of v, with respect to Lebesgue measure on Q can be found from

general results in [13] and [14] and is given by

e
E o
i
;
E
E’f}:

T T PN P SN |




T, (@) = max{C',min{C",ﬂO(w)}]; w€Qq, (10)
2

vhere ) = dmy/d\, c" = inf{8 = o|mo({no >8}) - emy@) <@ ({n’o > &}, and

c' = sup{® 2 ‘olex({no <90}) = mo({no £6)) + emo(Q)}.

Example 3 (band models): Suppose P > 0 is the power in X and that mL

and my are two finite spectral measureson §,3) with mL(Q) < (Zﬂ)nP<mU(Q).
Define two 2-alternating capacities VL and VU by VL(B) = mL(B) +

((Zﬂ)nP -mL(Q)), BER,B#¢, and vU(B) =min{mU(B), (er)nP}, BEZ,B#¢. Then
the set function V3 (B) = min{vL(B), VU(B)} is a 2-alternating capacity

on §,8) and 771v3 is given by

m, ={méey m<mSm adn@) = @m"el. (11)
3
Thus, My for this case is the band of spectral measures lying between the spectral
3
measures m, and mU This class is known as the band model and has been utilized
previously in problems of robust signal detection (Kuznetsov [15], Kassam [16]) and
robust Wiener filtering (Kassam and Lim [17]). This class was shown

to be of the type (3) by Vastola and Poor [18]. Note that, with m =

(1- s)mo and with m, = =, the class of (11) gives the €-mixture class of
(5). The derivative of vy with respect to Lebesgue measure on (2 canbe deter-
mined from a result in [18] and involves both derivatives dnxu/d)\ and dmL/dA.

Other examples of classes of the form of (3) include Prohorov
neighborhoods of a nominal spectral measure My (see Strassen [19, p. 438])
and generalizations of the mixture model of Example 1 generated by mixed
capacities of the form v(B) = ivg(B)H- (dg), where u is a measure on #

(see Strassen {19, Theorem 4]). A class of spectral measures that does

not fit the model of (3) is Sakrison's Model (b) (see {3, p. 11}) which




§ 10

<z essentially consists of those measures placing exact amounts of spectral
|' measure on members of a set of intervals covering the interval [-m,m].
This type of model is not of the type in (3) because such classes of measures

BN are not weakly closed (Vastola and Poor [18]).
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III. THE RATE-DISTORTION FUNCTION ON SPECTRAL CLASSES GENERATED BY

v CAPACITIES

The MSE rate-distortion function for a homogeneous Gaussian source
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X with spectral measure m depends only on the part of m that is absolutely

ISR
]
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e
s

continuous with respect to Lebesgue measure. This function, denoted by

Rm(D), is given by the parametric relationship

= Ry(Dg @) = (4m) ™" [ max{0, log(m, @)/8)} (dw) (12)

ad

and

SIS
R
v
RO
e
N
T
‘-. .
N
b

Dy m) = (21-r)'“dr min{e, m_()IA (dv) (13)

where T dm/d\ is the generalized Radon-Nikodym derivative of m with

respect to A,and 6 is a parameter ranging over the interval (O,Am] with

Ay = essesgp Trm(w). Note that 0 < Am < @, since Q is compact. The expression
of (12)m and (13) is given by Berger [2, Theorem 4.5.3] for the case n =1

and follows from Hayes, Habibi, and Wintz [20] for n 2 2.

It follows from (12) and (13) that the support of Rm(D) is the
-n
interval (0, Dm) and that Rm(Dm) = 0, where Dm = (21T) (E nmd)\. with

respect to this latter quantity we have the following result:

Lemma 3: Suppose v is a 2-alternating capacity on {,5) with Huber-

Strassen derivative Ty with respect to A. Theng rrvd)\ 2 g ﬂmdk for all

mE?/’(V.

.........
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Proof: Suppose m € M, For each 9 2 0, define sets B, = {rrv >8]} and

A= {ﬂm> 8}. By Lemma 1 we have

m(Ay) + 6] (&) = inf m(@%) +98A(B)] m(B;) + 91 (B,)
BER (14)
< v(B)) +8A(8))

for each 3 2 0, where the second inequality follows from the fact that
m=< v, Lemma 2 states that there is a measure q such that m, is a version

of dq/d\ and v(BS) = q(Bg). Thus, (l4) implies

[ cmds [ omdh +8D(8)-2(4)]
J e m c v
% B

for each 8 < o, which in turn implies

r‘
Je md\ < J‘&c mdh + [ ma+ m A (15)

5 a 2 %

for each § < », Taking the limit as 3 = » in (15) and defining B = 0 Bg

8>0
and A, -ego AS’ we have
Jamgdh s [, mar + “.f' m Ak + j‘ modh . (16)

Since A_ and BQ both have A\ measure zero, (16) is equivalent to ¢ 'n‘mdk <
g‘{ nvd)\ which was to be shown.

We see from Lemma 3 that no m€ le has more nonsingular power than
the member q singled out by Lemma 2. What we will show in the following
paragraphs is that Rq(D) achieves sup Rm(D)’ and hence that the spectral

oMy

density defined by T also achieves this supremum. To do this, we first
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need the following result which seems intuitively obvious from the

-~
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’ PR
- AT

derivation of (12) and (13) and from analogous results for memoryless
sources (see Berger [2, Theorem 4.,2.1 and pp. 110-111]) but for which

we could find no previously published proof.

Lemma 4: Suppose m is a spectral measure on ,3) with MSE rate-distortion

[ ]

= function Rm(D). Then Rm(D) has a right-hand derivative R;(D) for all
DE (O,Dm) where Dm = (Zﬂ)-ngg ﬂmdk, and this derivative is given by

N RQ(D) = -Z-nG;l where SD is determined uniquely by the equation

= oo

| D = (2m) " min{eD,r.m(w)h(dw). (17)

h

. Proof: The existence of the right-hand derivative of Rm(D) follows from

: the fact that Rm(D) is convex on (O,Dm) (see Berger [2, p. 270] and

. Royden [21, p. 109]). The relationship D (m) = (Zn)’“{m([nms 8l) +
SK({ﬂm > 6})] defines a continuous, strictly incféasing mapping ffom

:j (0, %n) onto (O, Dm)' This follows by noting that, for 0 <8 < 9'< Am,

' we have

v, [ ' - - ! - =

= @' -endm >e}) 2 @'-en(dn >0} - [ @' -n)a

" {9<ﬁmﬁ'}

e = (2" [Dy(m) =Dy @] = @' ~0N(m, >0 D) + [y -3)dh

e {e<m%58'}

‘ pS @'-e)x({nm>e'])>o, (18)
where the final inequality follows from the fact that 98' < Am =
ess sup 7 _(w). Thus, a unique 8_ is determined by (17) for each D€ (0,D ),
wen m D m
i and the right-hand derivative of Rm(D) is given by the expression

K

4 ' = - -

o Rm(D) lim [(Rm(Da(m)) Rm(D))/(DS(m) D)]. (19)

SJGD

- 4*,4,

B A, o™ Tl



[ "

g b Equation (12) implies that the numerator in (19) can be written as

R (D, ) - R (D) = (4m) "[log® /O ({m > 8}) " [ log@p/m )dr]

- 9D<n&se]
m = m™108@ /N (m >6)) -0~ [(m -9)an +0[@-8,)°1].
£ {8D<ﬂm$9}
-
Fs (20)
E Similarly the equality in the middle of (18) gives
E Dg(@) -D = @M (@ -8 n{m >ehH+ [ -8 )ar]. (21)
. {eD<nmse]
&

We thus have
- | ® 0y @) - R_(®))/(Dy (@) - D) + 270"} =

- -1 2

" 4m ™" (1og @y /0) +6 A ([m_>6]) +0(® -8.)")| /(D @) - D)

< 27" (1o ®,/8) +e]')1)/(e -8,) + 00 -8 )/A(m >8D)]. (22)

Y

- Since lim | (log(®_/8) +0-Yy/0 -0 )] = 0 and A({m_>8_}) > 0, the
e D D D m D
i -9

D
limit as & approaches BD of the right-hand side of (22) is zero.

i Thus R (D) = -2'"6-1, which was to be shown.
We may now use Lemma 4 to prove the main analytical result of this

paper., In particular, we have the following:

I! Theorem l: Suppose Vv is a 2-alternating capacity on ,3). Define P =

- 2m "vQ) and P, = (zn)’“g m,d\, where ™= dv/dA. Then su?g R (D) is
- e

s v




v vy

defined parametrically on (O,Pv) by the equations

———

' -n
HSEL;/? R (Dy) = (4m) gmaxfo,log(ﬂv(w)/e)h(dm) (23)
E. v
‘ and
E D, = (zﬂ)'“g min{8,7_@)IA (dw) (24)
| e A
1

and sup Rm(D) = (Q for D € [PV,P]. Moreover, there exists a measure
L 4]
] q €M guch that supR (D) = R (D) and dq/dA = m_a.e. (A].
m,

Proof: Suppose m € mv; then Rm(D) is absolutely continuous on any interval

T

[D,P] with D > 0 since it is convex on (0,P] (Royden [21, p. 109]). Thus,

for any D € (0,P), ' 2

g
r P P r
R (D) = R_(P) - j'D R! (x)dx = 'fD Ry (¥)dx, 25) 4

R

where R‘;‘(x) is obtained from Lemma 4 for x€ (O,Pm) and R‘; (x) =0 for x2 P E‘j

} Equation (25) is equivalent to

ﬁ
Ry

P

LA SR

2™ [ ® ¢-lmyax; D€ (o0,p
f R (D) = ID w e (26) —-
0 ; DE[R,P]
vhere 8 (m) is the unique value of 8 solving x = (Zﬂ)'n[m({nms e}) + “
BK({rrm>6])]. Note that the existence and uniqueness of ex(m) follows
) from the development in the proof to Lemma 4. Suppose qemv is such F

that dq/d\ = 7  a.e. [A] and q(tnvse}) - v({nvS 8}) for all 820 (the

existence of such a q follows from Lemma 2). Then
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ndm <el)+or({nm_>6}) = infm(B®) +07A (B)] < inf[v(BS) +O)\ (B))
" m BER BER

= v([ﬂvs 8}) +6x ({nv>e]) = q({nqse} ) +e>\({nq>e}).
@7

Thus, since [m({ﬂmS 8}) +6A ({rrm>9])] is strictly increasing in 8 on

( O,Am), we must have Gx(q)S Gx(m) for all x€ (O,Pm). Therefore, we
have 37'(2)26 " (m) for all x€ (0,B ) and, since Lema 3 implies P, > By,
(26) gives Rm(D)S Rq(]?) for all D€ (0,P). To complete the proof we need
only note that the quantity defined by (23) and (24) 1is Rq(D) on (O,Pq)
and that Pq = Pv.

Theorem 1 implies that the quantity sup Rm(D) is the rate=-distortion
curve corresponding to the spectral density ;v,which is the Huber-Strassen
derivative of v with respect to Lebesgue measure on ,5). This theorem
also states that there is a qG?Ilv that has distortion rate :‘61;7)( R (D) for
each D€ (0,P]. Thus, for classes of the form M , the speCZral density
ﬁv represents a worst-case or least-favorable spectrum in terms of MSE
distortion rate, and the problem of finding sup Rm(D) is solved once nv
is determined. For the examples given in Section II, the solution is
thus obtained. 1In general, we have the following theorem which characterizes
the spectral measures q€7/'(v (withdq/d\ = m, a-e. [A]) that are singled

out by Lemma 2,

Theorem 2: For each measure mGWIV, define m' to be the part of m that

is absolutely continuous with respect to A (via the Lebesgue decomposition).

A measure qEWIV satisfies the conclusion of Lemma 2 if and only if, q

minimizes the quantity

.......
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J@) = [ log[d( +m')/dA]d (A +m") (27)
' Q

over 7.

Proof: Suppose q satisfies the conclusion of Lemma 2, i.e.,

dg/dA = m_a.e. [A] and q({nv £0}) = V({TTV < 8}) for all® z 0.

PN S

Noting that 77!v is convex,define, for each v€ [0,1] and mE’/‘/‘lv, the measure

m, = (1=¥)q+Ym and the function TTY = d(m\; +A)/d\. Since x log(x) is

A

convex for x€ (0,») and since m,; = [(1-v)q' +ym'] we have that J(m) is

.convex on le. Thus a sufficient condition for q to minimize J(m) over
7/(v is that bJ(mY)/bY|Y=0 be nonnegative for every m€ 7/(v satisfying

J(m) <=, Since log[ny(w)]ny(w) is convex in Y on [0,1] for each

st RO ekt

w€Q, we have

(M, =) (L+10g(Ty)) < Y'l(nylog (ﬂY) - ﬂolos(ﬂo)) 1

a.e. [A\]. (28)

< 'r'rllog(nl) - ﬂolog(no), ‘

The left-most quantity of (28) is bounded below a.e.[A] and the right-most

quantity is integrable with respect to A. Thus since the term Y'l(ﬂvlog(ny) -
nolog(ﬂo)) converges monotonically to ('rr1 -rro) (1+log(1'ro)) as y ¢ 0,

the Monotone Convergence Theorem (Royden [21,p. 84]) implies that

33 @ )/ |, .0 = J b[ﬂylos(ﬂY)]/bYlY.odA

E -J (T, =) (1 +Log (my) )dA




£ ’

= (L+logl+7 ))dm' -_I} (1+log(L+m ))dq', (29)

F Q

since m' ({m =8}) S m({n sel) = v({m <e}) = qdm se}) = q'({n <o}

r

t for all 6 2 0,we see that T is stochastically smaller under q' than

P under m'. Thus, since (1+log(l +ﬂv)) is increasing in TTV, the quantity

: in (29) is nonnegative, which is sufficient for q to minimize J(m).

L We now see that if q is as in lLemma 2 it minimizes J(m) over 77(v
Suppose p€7l(v also minimizes J(m) over mv. Then, since J(m) is

¥ convex on 7/(v, J((l-Y)q+Yp) must be constant for Y€ [0,1]. This implies,

o for instance, that bZJ((l-Y)q +Yp )/szlYaO = 0. Applying analysis

similar to that yielding (29), we have

23(-nra+vRI Y g - [ e, -m)imglar = 0, (30)

i 3

where ﬂ'p = dp/d\. Equation (30) implies that nq =T, a.e. (A1 and,hence,

B ]

that p' =q' mod[A]. Thus p also satisfies the conclusion of Lemma 2.

This completes the proof.

. ey
A

Note that the quantity J(m) of (27) is a measure of the distance or

Sy
2.4

e divergence of the measure (A +m') from A (see, for example, Kullback [22]).

Thus, we see that the least-favorable spectral measure q is that which is

closest to Lebesgue measure in this sense. Since Lebesgue measure on Q0

vy
LR

represents white noise (which corresponds to a memoryless source) we see

that q is, in a sense, the 'most memoryless' element of 7ﬂv. Note also that

Lemma 3 implies that q has the maximum possible nomsingular power of any

P measure in 771v. These phenomena agree well with the intuitive meaning of
the rate-distortion function since, in general, a memoryless source requires

;.:: the highest rate for a given degree of distortion when no other constraints

are placed on the source spectrum,
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: IV. EXAMPLE — MIXTURE CONTAMINATED GAUSS-MARKOV SOURCES

'I In this section we use a specific example of the mixture model of

- Example 1 in Section II to illustrate our results. In

¥t particular we consider a one-parameter source (n=1) whose spectral measure

!. m has a nominal first-order Markov spectral density with degree of mixture
uncertainty . That is, we have m = (l-e)m0 + ¢h where h is unknown,

¢ € [0,1], and where m

o is given by

2 2.-1
my(8) = P(l-r%) j‘ (1=2rcos (w) +r°) A(dw) , A €48, (31)
A

with |r| < 1. Recall that P> 0 is the source power. This nominal source
corresponds to a Gaussian source with autocorrelation function

-~ EQXy ) = P'rlkl; k € Z, We will assume in the following, that P=1 and
'l r> 0. .

o The rate-distortion function corresponding to the nominal source m

is discussed in [2, pp. 113-115]. This function is given by

R (D) = =1log [(1-£%)/D] (32)
_ mo 2
= for 0 <D < (1-r)/(l+r), and parametrically by
_“,.- e -
- D (mg) = 1 + —:9; - %tan 1(%’::“ (-x;-)) (33)

o and
is % 2
l-r 1
) Rmo(De my)) =35 108 FF57) - 55(CL, (2% +2y,)
= - Cly (2%,) = Ch, (25,) - 25, log (¥)] (34)

.................
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o for (l-r)/(l+r) < D = 1, which corresponds to (l-r)/(l+r) = & < (l+r)/(l-r).

- Here

r 2 2
. -1 (222140 (14r )]
o = COS s 0= £, (35)
% T 18 9
n o1 [ zsinxy)
Yo Tt |Torcostgy) b 05 % ST 6

and sz denotes Clausen's integral defined by

Ch, (x) = - jz log (2 sin (t/2))dt. (37)
: (Note: There apparently are some minor errors in Eq. (4.5.35) of {2] which
. should correspond to (34); however, (34) follows directly from (12) and Eq. (39)
. on p. 272 of Lewin [23].)
Equation (8) specifies the worst-case spectral density (i.e., the
, Huber-Strassen derivative) for this model; in particular,we have

us ) = méx{c', (1-e)(1-r2)(1-2rcos (w) +r2)-1}, wE [~m,m], (38)

xremws
)

where c' is defined below (8). Straightforward analysis yields that c¢' is

=

o the solution to the equation

= (1-¢)Dy (mp)] +em=c', (39)
. 8=c'/(l-¢)

" The worst-case spectral density of (38) {s illustrated in Fig. 1 for the
e,

] case r= .5 and ¢ =.25. Note from this illustration that, since

El; f nvdl =1, it follows that c' is monotonically increasing with ¢ for

Y
(ERA

(l-r)/(14r) € ¢' < 1,and that c¢' will be identically 1 for all ¢ 2 € nax>
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- )} - = . - i J .
where (1 emax,(1+r)/(l r) 1; i.e € nax 2r/(l4+r). Thus, for all
- emax’ the worst-case source is memoryless (i.e., white). Note also

that, for general ¢, a fraction

%T'-T- j‘ A (dw) (40)

(m,=e')

of the worst-case source power can be thought of as being due to a memory-
less component. This fraction along with the value of c' are plotted versus
¢ in Fig. 2 for the case r=.,75 (for which emax==6/7). Note that, for
e =.1l,about 12% of the source power is due to the memoryless component and,
for ¢ = .3,about 457 is due to the memoryless component.

The rate-distortion function for the worst-case source can be derived

straightforwardly from (12) and (13). After some analysis we have

1
R (D) = 51log (¢'/D) + R_ (D, (m.)) “1)
q 2 mo ] 0 |6=C'/(1°€)

for 0 <D = ¢', and Rq(D) is given parametrically by

D, (q) = (l-€)D_(m,)| + ¢ (42)
¢ YO0 L8/ (l-e)

and

Rq(® (@) = &, @, (@g))| (43)

H
y=8/(1l-¢)
for ¢' < D £ 1, which corresponds to c' <8 < (l-¢)(l+r)/(l-r). Here

DY(mo) and Rm DY(mo)) are defined by (33) through (37) and q denotes the

(
0
measure corresponding to the Lebesgue density Ty (L.e.y dq = nvdl). The
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rate-distortion function of (41) through (43) is plotted in Fig. 3 for the
case r = .75 and for several values of ¢, Note that, as € increases from
zero to € nax’ the convexity of the worst-case curve becomes less pronounced. Of
course, the ¢ = 0 curve corresponds to the uncontaminated Gauss-Markov source, and
thee 2 smax curve corresponds to amemoryless source which is universally the worst case.
It is interesting to note that (39) and (41) through (43) also apply
to mixtures with nominal spectra other than the Gauss-Markov. That is, i{
fnodl = 21 where Ty = de/dl; then the mixture model with nominal measure
m, has worst-case spectral density given by (8) and (39), and the corres-
ponding rate-distortion function is given by (41) through (43) with
DY(mO) and Rmo( 0

behavior similar to that of Fig. 3 would be expected for other mixtures.

DY (mo)) being the rate-distortion equations for m Thus,

For example, for ¢ =2 1 - ess sup TTO(U)), such a mixture class would contain
w€Q

a memoryless source.
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V. EXTENSION TO BANDLIMITED CONTINUOUS-PARAMETER SOURCES

Theorems 1 and 2, as proven above, apply to discrete-parameter sources.
Rate-distortion functions for continuous-parameter sources, however, can
also be determined from (12) and (13) provided their spectral demnsities
are essentially bounded (see Berger [2, pp. 116-122]). Thus, if we assume
that X = {Xt; t € Bp}iﬁ a homogeneous continuous-parameter source with
spectral measure m € 7I(v, a capacity class on (Rn,E), we should be able to
prove results analogous to Theorems 1 and 2. This is the case if we make
the additional restriction that v(Qc) = 0 for some compact Q C Rn. This
restriction is equivalent to assuming that all sources have a common
(Einite) bandlimit and is sufficient to assure that (12) and (13) apply to
all source spectra in.W%_and to apply the existing Huber-Strassen theory
to differentiate v with respect to Lebesgue measure on 2. We thus have
Theorem 3: Theorems 1 and 2 hold for n-continuous-parameter sources
provided (1 is a compact subset of R".

It should be noted that Huber-Strassen derivatives of capacities with
respect to o-finite (and not finite) measures can be constructed [24]; thus
Theorem 3 can possibly be extended to nonbandlimited sources provided that
the definition of m is appropriately modified. However, several of the
most useful examples of capacity classes (e.g., the e-mixtures and varia-

tion neighborhoods) fail to be capacity classes when 0 is not compact.
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i List of Footnotes
! . l. For compactness of notation we will write {f > 9} to denote {w€Q| £(w)>6}.

: 2. Note that this set function (and the one defined in Example 2) is dis-

: continuous fromabove at the null set ¢. However, for O = [-n,n]n, this

. discontinuity does not violate the property that v must be continuous

” from above on closed sets (i.e., Property (iv)) since, in a compact
separable metric space, there is no sequence of closed sets converging

¢ down to the null set (Dunford and Schwartz [l1, pp. 30-31]).
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! Fig. 1 - Worst-case spectral density for a contaminated-mixture class

(¢ =.25) with a nominal Gauss-Markov source (r =.5).

Fig. 2 - Worst-case spectrum parameter c' and fraction of worst-case
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